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The problem of Poiseuille flow in a fluid overlying a porous medium saturated with the
same fluid is studied. A careful linear instability analysis is carried out. It is shown that
there are three modes of instability, two belong to one eigenvalue and persist in small
ranges of parameters, while beyond these parameter ranges a third corresponding to
another eigenvalue prevails. These three modes are of different stability characteristics,
but are triggered by the shear stress of the Poiseuille flow in the fluid layer.

1. Introduction
The instability of two-dimensional parallel flows and in particular Poiseuille flow

has been a major problem in fluid mechanics for many years. An excellent account
of the early work on this problem may be found in Stuart (1963), or in Drazin &
Reid (1981, chap. 4). More recently, many writers have tried to explain discrepancies
between the results of linear instability theory and experiments, see, for example,
the optimal energy growth approach of Butler & Farrell (1992). The latter work
and related analysis involving energy stability theory is reviewed in Straughan (1998,
chap. 8). The object of the present paper is to study the classical problem of Poiseuille
flow, but when a Newtonian fluid overlies a layer of porous material saturated with
the same fluid. We believe this is the first analysis of this problem.

The thermal convection problem for a fluid overlying a porous medium has been
the object of much attention, cf. Chen & Chen (1988), Nield (1998), Nield & Bejan
(1999) and Straughan (2001, 2002, 2004 p. 174). Chen & Chen (1988) found that the
linear instability curves for the onset of convection may be bi-modal. The parameter
which is the key in their work is the depth ratio

d̂ =
d

dm

=
depth of fluid layer

depth of porous layer
. (1.1)

They find that for d̂ � 0.13, instability is initiated in and dominated by the porous
medium, whereas for d̂ greater than this value, the instability is effectively dominated
by the fluid layer. Mathematically, this switching of fluid/porous layer roles manifests
itself in having two maxima (or minima) on the neutral curve instead of the one
found in the classical Bénard problem.

Flow in a porous–fluid system has numerous industrial and geotechnical
applications and consequently has received much attention in the literature, cf.
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Nield (1983, 1991, 1998), Nield & Bejan (1999), and the many references in the
last contribution. In particular, Nield (1983, 1991, 1998) has analysed in much detail
two or more layer systems especially with regard to finding the most suitable porous
medium model (i.e. Darcy, Forchheimer and/or Brinkman). Specific applications of
flow in a porous–fluid layer system include flow of water under the Earth’s surface (cf.
Ewing 1997; Ewing & Weekes 1998), flow of oil in underground reservoirs (cf. Allen
1984; Allen, Behie & Trangenstein 1988), bioremediation of contaminated ground
and related fields (cf. e.g. Suchomel, Chen & Allen 1998; Chen et al. 1994), and
manufacturing of composite materials used in the aircraft and automobile industries
(cf. Blest et al. 1999a, b).

The present paper should not be confused with instability in a two-layer system
composed of different immiscible fluids. This is another important problem, various
aspects of which are studied in detail in Chen & Crighton (1994), Hooper (1989),
South & Hooper (1999), Timoshin & Hooper (2000), see also the references therein.
In addition, the work here ought not to be confused with the resuspension problem
wherein a two-layer situation is created by fluid flowing over a silty bottom which
then creates a situation of a clean fluid layer overlying a layer of suspension. Work
on the latter problem may be found in Schaflinger, Acrivos & Zhang (1989), Zhang,
Acrivos & Schaflinger (1992), and Waller & Schaflinger (1998).

In this paper we consider a fixed porous layer and our findings are significant. We
discover a tri-modal structure to the neutral curves for instability. For d̂ � 0.11,
instability is connected with the porous layer, whereas for d̂ ≈ 0.12, the fluid layer
takes over. This is seen by a bi-modal behaviour on one neutral curve. However, as
d̂ is increased, a second eigenvalue begins to dominate the instability picture and
certainly by d̂ ≈ 0.15, this eigenvalue is responsible for linear instability. Again, the
fluid is now the dominant instability region. Here, we do not consider the limiting
cases d̂ → 0 or d̂ → ∞. These cases could have important applications in such areas
as mudslides, but will be investigated by a more careful asymptotic approach. We
simply report on the tri-modal neutral curve behaviour and the associated changes
of instability mechanism in the range d̂ = 0.1 to d̂ = 0.3.

2. Governing equations
We essentially employed the notation of Chen & Chen (1988), adapted to the

problem in hand. Thus, we consider a porous medium occupying the three-dimensional
layer {x, y ∈ �2} × {z ∈ (−dm, 0)} with the fluid occupying the layer {x, y ∈ �2} ×
{z ∈ (0, d)}. The interface between the porous medium and the fluid is at z =0. The
governing equations in the fluid are the Navier–Stokes equations

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ ν�ui, (2.1)

∂ui

∂xi

= 0, (2.2)

which are assumed to hold for time t > 0. In these equations, ui and p are velocity
and pressure, and ρ and ν are density and kinematic viscosity. Standard indicial
notation is employed throughout, with � being the Laplace operator. In the porous
medium, the governing equations are those of Darcy flow,

1

χ

∂um
i

∂t
= − 1

ρ

∂pm

∂xi

− ν

K
um

i , (2.3)
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∂um
i

∂xi

= 0, (2.4)

for t > 0, where um
i is the pore averaged velocity, pm the interstitial pressure, χ the

porosity, K the permeability, and superscript (or subscript) m denotes porous medium
where necessary.

To model the flow of a fluid over a porous medium, suitable conditions at the
boundary between the two media are required. Deriving such conditions is proving
problematic, see, for example, the approaches in Beavers & Joseph (1967), Saffman
(1971), Taylor (1971), Jones (1973), Caviglia, Morro & Straughan (1992), Jäger &
Mikelic (1998), Ciesjko & Kubik (1999), Jäger, Mikelic & Neuss (1999), Murdoch &
Soliman (1999), Nield & Bejan (1999) and McKay (2001). We here employ the
experimentally suggested condition proposed by Beavers & Joseph (1967), or that
by Jones (1973). Even though the condition of Beavers & Joseph (1967) precedes
that of Jones (1973), it may be preferred as the latter is completely invariant. If
we write u =(u1, u2, u3) = (u, v, w) and um =(um

1 , um
2 , um

3 ) = (um, vm, wm) the Jones and
Beavers–Joseph interface condition may be expressed as

∂ui

∂z
+ J

∂w

∂xi

=
α√
K

(
ui − um

i

)
(i = 1, 2). (2.5)

In (2.5), J =1 yields the Jones (1973) condition whereas that of Beavers & Joseph
(1967) follows by taking J = 0, and α is the so-called Beavers–Joseph constant which
must be determined by experiment and varies for different fluids and porous media.
Straughan (2002) contains results for thermal convection for various values of α

appropriate to real materials.
In addition to (2.5), we must assume that the normal velocity and the pressure are

continuous across z = 0, i.e. w = wm and pm = p (Beavers & Joseph 1967). We observe
that Payne & Straughan (1998) show continuous dependence on the parameter α in
the Jones condition when Darcy’s law holds in the porous medium for Stokes’ flow
in the fluid layer. It is worth observing that the Beavers–Joseph condition has been
successfully employed in the slow flow of a fluid past a porous sphere by Qin &
Kaloni (1993). Straughan (2004) concludes that if a linearized instability analysis
is employed, then use of condition (2.5) with J =0 or J =1 is probably justified.
Numerical computations for coupled fluid flow and porous flow problems are given
by Discacciati, Miglio & Quarteroni (2002) and Miglio, Quarteroni & Saleri (2003).
Das, Nassehi & Wakeman (2002) is another numerical contribution employing a finite-
volume method in three-dimensions where the porous medium may be anisotropic.
They show that the direction of flow may reverse at the interface between the
porous medium and fluid, a phenomenon also encountered here. Existence of a weak
solution for Darcy porous media flow coupled to the Stokes equations in a fluid with
the Beavers–Joseph interface boundary condition is proved in Layton, Schieweck
& Yotov (2003). Despite the concern in the literature over the correct interface
boundary conditions, those of Jones or Beavers–Joseph have yielded good results when
compared with experiment. Thus, we employ these conditions here. We find virtually
no difference in the instability results whichever of the two boundary conditions is
used. This agrees with what is found in thermal convection (cf. Straughan 2002, 2004).

2.1. The basic flow

For Poiseuille flow we assume a constant pressure gradient in the x-direction. The
basic solution to equations (2.1) and (2.3) with the boundary conditions outlined
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above, together with u = 0 on z = d and wm =0 on z = −dm is

ū(z) = 1
2
A1z

2 + A2z + A3, v̄ = w̄ = 0, 0 � z � d,

ūm = −A1K, v̄m = w̄m = 0, −dm � z � 0.

}
(2.6)

Note, we denote the base solution with an overbar. In (2.6), where

A1 =
1

µ

dp

dx
, A2 = αA1

√
K − αA1d

2 + 2α2A1d
√

K

2(αd +
√

K)
,

A3 = −A1d
2
√

K + 2αA1Kd

2(αd +
√

K)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.7)

To interpret the relative magnitudes of velocity in both the fluid and porous layers,
the length scale in the fluid layer is normalized by dividing by d and that of the
porous layer by dm, and the dimensional basic velocities in both layers are normalized
by dividing by V , the maximum of ū(z). Then we have, respectively, the velocity
function

U (z) =
ū(z)

V
=

z2 + 2B1z + 2B2

2B2 − B2
1

(z ∈ (0, 1)) (2.8)

for the fluid layer, and

Um =
ūm

V
=

2δ2(
B2

1 − 2B2

)
d̂2

(z ∈ (−1, 0)) (2.9)

for the porous layer, where

B1 = −αd̂ + 2α2δ

2(αd̂ + δ)
+

αδ

d̂
, B2 = − δd̂ + 2αδ2

2(αd̂2 + δd̂)
. (2.10)

and δ is the Darcy number defined by δ =
√

K/dm. The resulting basic velocity profiles
for three different d̂ are displayed in figure 1. Note that the presence of porous medium
below breaks the symmetry of the basic flow in the fluid layer, so that the symmetry
of classic Poiseuille flow precluding the existence of the odd shear mode may change,
and in fact, as will be shown by the present analysis, the presence of both the porous
medium and the shear in the fluid layer play crucial roles in the system stability.

2.2. Perturbation equations

We now derive perturbation equations and non-dimensionalize with scales of length,
velocity, time and pressure in the fluid as d , V , d/V , µV/d , while in the porous
layer they are dm, Vm, dm/Vm, µVm/dm, where Vm = ūm. The linearized perturbation
equations take the form

∂ui

∂xi

= 0, (2.11a)

Re

(
∂ui

∂t
+ uj

∂ūi

∂xj

+ ūj

∂ui

∂xj

)
= − ∂p

∂xi

+ �ui, (2.11b)

in �2 × (0, 1) × (0, ∞) and

∂um

∂xm
i

= 0, (2.12a)

Rem

χ

∂um
i

∂tm
+

1

δ2
um

i = −∂pm

∂xm
i

, (2.12b)
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Figure 1. The basic states of dimensionless velocity in both fluid and porous layers for three
assigned values of depth ratio. The maximum velocity in the fluid layer is set to 1 and the
bottom scale show the relative magnitude of velocity in porous layer. The other parameters
are δ =10−3, χ = 0.3, α = 0.1 and J = 0.

in �2 × (−1, 0) × (0, ∞), where Re and Rem are the Reynolds numbers in the fluid
and porous layers given by Re = V d/ν and Rem =Vmdm/ν. Note that

Rem =
2δ2

d̂3
(
B2

1 − 2B2

)Re. (2.13)

Normal modes are employed

ui = ui(z) exp(i(ax + by − act)), p = π(z) exp(i(ax + by − act)), (2.14a, b)

um
i = um

i (zm) exp(i(amxm + bmym − amcmtm)), pm = πm(zm) exp(i(amxm + bmym − amcmtm)),

(2.14c, d)

to reduce the above equations to the form

iau + ibv + Dw = 0, (2.15a)
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Re(U − c)iau + ReU ′w = −iaπ + [D2 − (a2 + b2)]u, (2.15b)

Re(U − c)iav = −ibπ + [D2 − (a2 + b2)]v, (2.15c)

Re(U − c)iaw = −Dπ + [D2 − (a2 + b2)]w, (2.15d)

and

iamum + ibmvm + Dpwm = 0, (2.16a)

(
1

δ2
− Rem iamcm

χ

)
um + iamπm = 0, (2.16b)

(
1

δ2
− Rem iamcm

χ

)
vm + ibmπm = 0, (2.16c)

(
1

δ2
− Rem iamcm

χ

)
wm + DP πm = 0, (2.16d)

where D= d/dz, U ′ = dU/dz, and Dp =d/dzm. Presumably the instability is dominated
by two-dimensional disturbances; we employ Squire’s theorem to reduce the above
three-dimensional equations into an equivalent two-dimensional counterpart. The
details of this procedure are standard and can be found in Drazin & Reid (1981).
The resultant two-dimensional equations are

iau + Dw = 0, (2.17a)

Re(U − c)iau + ReU ′w = −iaπ + (D2 − a2)u, (2.17b)

Re(U − c)iaw = −Dπ + (D2 − a2)w, (2.17c)

for z ∈ (0, 1), and

iamum + Dpwm = 0, (2.18a)

(
1

δ2
− Rem iamcm

χ

)
um + iamπm = 0, (2.18b)

(
1

δ2
− Rem iamcm

χ

)
wm + DP πm = 0, (2.18c)

for z ∈ (−1, 0).
We next introduce the streamfunction ψ by u = ∂ψ/∂z, w = −∂ψ/∂x, with a similar

definition for ψm and further introduce eigenfunctions φ and φm by

ψ = φ(z) exp (ia(x − ct)), ψm = φm(zm) exp (iam(xm − cmtm)). (2.19a, b)

The differential equations (2.17) and (2.18) may now be reduced to the following two
equations,

(D2 − a2)2φ = iaRe(U − c)(D2 − a2)φ − iaReU ′′φ, z ∈ (0, 1), (2.20)
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1

δ2
− Rem iamcm

χ

)(
D2

p − a2
m

)
φm = 0, zm ∈ (−1, 0). (2.21)

It is worth recording the following relations between a, am, c and cm,

a = d̂am, cRe = cmd̂Rem. (2.22a, b)

Equations (2.20) and (2.21) comprise a sixth-order system. To this we append the
boundary conditions, on the upper plane z = 1,

φ = Dφ = 0, (2.23)

while on the base of the porous layer zm = −1,

φm = 0. (2.24)

On the interface zm = z = 0, we have

Reφ = Remφm, (2.25)

D2φ + Ja2φ − αd̂

δ
Dφ +

αd̂2Rem

δRe
Dpφm = 0, z = 0, (2.26)

and also on z =0,(
Rem iamcm

χ
− 1

δ2

)
Dpφm =

Re

d̂3Rem
[(D2 − a2)Dφ − iaRe(U − c)Dφ + iaReU ′φ]. (2.27)

Thus, the complete system to be solved is comprised of equations (2.20) and (2.21)
together with the six boundary conditions (2.22)–(2.27), which is an eigenvalue
problem.

3. Numerical results and discussion
We solve the above eigenvalue problem by means of a D2 Chebyshev tau method

(cf. Dongarra, Straughan & Walker (1996)). To do this we rewrite (2.20) as two
second-order equations

(D2 − a2)φ − ξ = 0, (3.1)

(D2 − a2)ξ = iaRe(U − c)ξ − iaReU ′′φ. (3.2)

We then solve (2.21), (3.1), (3.2) for φ, ξ , φm (regarded as independent variables) in
the Chebyshev domain (−1, 1). Details of the numerical procedure are similar to
those in Straughan (2001, 2002).

The numerical results presented here are very accurate and to ensure this we have
checked convergence. By varying the number of polynomials, N , it is found that 50
polynomials usually yields 8 decimal places of accuracy in 64 bit arithmetic, for the
Re values we are working with. For example, at a = 1, Re= 104 with d̂ = 0.1, δ = 0.001,
χ =0.3, α = 0.1 and J = 0, the leading eigenvalue cr + ici for N = 50, 60 and 70 is
always 0.47942476 + i0.03274867. The results we report are obtained with N = 50. In
the following analyses, we fix major parameters at representative values of d̂ = 0.13,
δ = 10−3, χ = 0.3, α = 0.1 and J = 0 to study the variation of stability with d̂ , α and
δ. As the effect of one parameter is studied, the other parameters are fixed as shown
above. Some practical properties of many materials of porous media can be found in
Straughan (2002 table 1).
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a Re cr ci

1.45 9650 0.277278 −0.175791 × 10−2

0.421976 −0.184145 × 10−2

9700 0.421619 −0.149724 × 10−2

0.277073 −0.169746 × 10−2

9900 0.420221 −0.136822 × 10−3

0.276262 −0.146499 × 10−2

9950 0.419879 +0.199238 × 10−3

0.276061 −0.140912 × 10−2

1.65 7150 0.303031 −0.469375 × 10−4

0.429535 −0.224921 × 10−1

7200 0.302767 +0.535402 × 10−4

0.428949 −0.220648 × 10−1

10 600 0.288131 +0.293034 × 10−2

0.398393 +0.289542 × 10−2

10 650 0.398055 +0.321401 × 10−2

0.287947 +0.293139 × 10−2

1.95 9400 0.314078 −0.282455 × 10−2

0.384153 −0.295594 × 10−2

9450 0.383708 −0.253630 × 10−2

0.313867 −0.293265 × 10−2

9750 0.381136 −0.287064 × 10−3

0.312590 −0.361514 × 10−2

9800 0.380725 +0.387157 × 10−3

0.312374 −0.373397 × 10−2

Table 1. The variation of the first two eigenvalues with largest imaginary parts, with respect

to Re, for several assigned values of a; d̂ = 0.13.

3.1. Depth ratio d̂ effects

The depth ratio d̂ is the major parameter influencing the stability of the superposed
fluid–porous layer system (Chen & Chen 1988). Figure 2 represents the neutral curves
(ci = 0) for various values of d̂ . In figures 2(a) and 2(b), the neutral curves display
a bi-modal structure. In figure 2(a), the dominant mode of instability is found for
d̂ =0.11, ac = 0.84 with Rec = 7234, the subscript (or superscript) c denoting critical
value where necessary. The corresponding eigenfunction in figure 3(a) shows the
strong effect the porous medium has, and indeed, a flow reversal near the interface
reveals the involvement of the porous medium in the stability owing to the space
restriction within the shallow fluid layer. When d̂ =0.12 (figure 2b), the dominant
mode of instability is found at ac = 2.46, Rec = 7560. The corresponding eigenfunction
(figure 3b) shows strong movement in the fluid, but with little effect now in the porous
medium. Flow reversal is still evident in the upper part of the fluid layer while it
disappears completely in the porous layer, and the real part of φ is approximately
antisymmetric with respect to the centreline of the fluid layer (or an odd function).
In figure 2(c), d̂ =0.121, the dominant mode is still in the fluid (ac ≈ 2.5), but now a
second eigenvalue begins to enter the picture (the v-shaped protrusion). The broken
curves in figures 2(a)–2(f ) represent the real part of c and in figures 2(c)–2(f ) the
break in this curve is due to mode switching (i.e. the second eigenvalue entering the
picture, which will be explained in more detail in table 1 and figure 4).

In figure 2(d), the second eigenvalue now represents the dominant mode of
instability, as indicated by the lowest minimum at the middle. The eigenfunction,
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Figure 2. The variations of the neutral curve indicated by the solid line and corresponding
oscillatory frequency by the dashed line with several assigned values of depth ratio; (a)

d̂ = 0.11, (b) d̂ = 0.12, (c) d̂ =0.121, (d) d̂ = 0.13, (e) d̂ = 0.2, (f ) d̂ = 0.3. The other parameters
are δ =10−3, χ = 0.3, α = 0.1 and J = 0.

figure 3(c), shows that the instability is now largely controlled by the fluid layer
and the real part of φ is approximately symmetric with respect to the centreline of
the fluid layer (an even function). Note that, in the tri-modal neutral curve such
as that of figure 2(d), the eigenfunction corresponding to the local minimum at the
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Figure 3. The variations of normalized dimensional streamfunction amplitude with respect
to several assigned values of the depth ratio at a critical state, the solid lines represent the real

parts and the dashed lines represent the imaginary parts; (a) d̂ =0.11, ac =0.84, Rec = 7234;

(b) d̂ = 0.12, ac = 2.46, Rec = 7584; (c) d̂ = 0.13, ac = 1.84, Rec = 6297; (d) d̂ = 0.15, ac = 1.89,

Rec = 5961; (e) d̂ = 0.16, ac = 1.91, Rec = 6032; (f ) d̂ = 0.2, ac = 1.94, Rec =6676. Note that in
(f ) the real part is magnified with respect to the scale of the above horizontal axis. The other
parameters are δ =10−3, χ = 0.3, α = 0.1 and J = 0.
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left is similar to that of figure 3(a), and that to the local minimum at the right
is similar to that of figure 3(b). As d̂ is increased to 0.2, see figure 2(e), the left-
hand lobe of the neutral curve corresponding to the porous-layer dominance has
disappeared and the second eigenvalue is clearly dominant. In figure 2(f ), d̂ =0.3, the
right-hand lobe corresponding to the fluid-layer dominance has almost disappeared
from the scene with the second eigenvalue dominating everything. Figures 3(d)–3(f )
show the eigenfunctions for d̂ = 0.15, 0.16, 0.2, respectively, suggesting that the second
eigenvalue accounts for an instability mode largely confined to the fluid layer.

According to Chen & Chen (1988), who investigated the onset of thermal convection
in the superposed fluid–porous layers heated from below, the mode corresponding to
the left-hand lobe of the neutral curve (figure 2c) is the so-called porous-layer mode
(Worster 1992) that the onset of instability occurs in both the fluid and porous layers
while the porous medium largely controls the stability. The mode corresponding to the
right-hand lobe is the fluid-layer mode (Worster 1992) so that the onset of instability
is largely confined to the fluid layer and the porous layer plays virtually no role
in stability. The switch between the fluid-layer and the porous-layer modes depends
primarily on the relative depth of the fluid layer, or d̂ . For a large d̂ the fluid-layer
dominates and for a small d̂ the porous-layer dominates.

The third mode corresponding to the middle lobe was not present in the Bénard
problem of Chen & Chen (1988). In the Bénard problem, the basic flow is quiescent
so there is no shear in the horizontal direction, leading to the porous-layer mode
shifting dramatically into the fluid-layer mode at d̂ ≈ 0.13, i.e. no part in the transition
played by the third mode. It is therefore implied that the third mode results from
the shear in the fluid layer. To confirm this scenario, we observe the eigenfunctions
of figure 3 as follows. As noted previously, by observing figure 3(b) regarding the
eigenfunction of this fluid-layer mode, it is found that the φ is approximately an
odd-symmetry function with respect to the centreline of the fluid layer. Accordingly,
we will call this mode the odd-fluid-layer mode in order to differentiate from the
third mode whose φ (see figure 3c) is virtually an even-symmetry function in the
fluid layer. We recall that in the single-layer plane Poiseuille flow, the symmetry of
the basic flow precludes the possibility that odd disturbances can be unstable, only
the even-shear-mode dominates. As a consequence, we imply that the third mode
is obviously the even-shear-mode of the Poiseuille flow so that it will be called the
even-fluid-layer mode afterwards.

We also note that the present stability characteristics are very different from
those revealed by Tilley et al. (1994a, b) who investigated the stability of the plane
Poiseuille flow of two immiscible oil–water superposed fluids, although they also
found tri-modal instability in their system. In addition to the even-shear-mode, they
found that the interfacial mode (triggered by the shear at interface) and the odd shear
mode (triggered by the breaking symmetry of the basic flow) can become the primary
instability depending mainly on the relative channel thickness, and the interfacial
mode becomes the dominant instability when the depth ratio (d̂ , oil-to-water) is large.
The interfacial mode is obviously a result of the presence of the immiscible interface.
In the present system, before the third mode (or the even-fluid-layer mode) is initiated,
the stability is bi-modal, competing by the odd-fluid-layer and porous-layer modes due
to changing d̂ . After the even-fluid-layer-mode is initiated, the fluid-layer dominance
becomes more significant as d̂ increases and, eventually, both the porous-layer and
the odd-fluid-layer modes are completely suppressed. Under such a circumstance, the
presence of the porous layer can be virtually ignored and the whole system behaves
like a plane Poiseuille flow with a porous-slip boundary below.
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Figure 4. The spectrum of eigenvalue at a = 1.48 with d̂ = 0.13, (a) Re= 9900, (c) Re =10 000,
(b) and (d) are the magnifications of the square region for the first two leading eigenvalues for
(a) and (c), respectively. The other parameters are δ = 10−3, χ = 0.3, α = 0.1 and J = 0.

The above discussion indicates that the mode switching from bi-modal stability
to tri-modal stability plays a crucial role in the present system. We therefore show
the detail of the mode switching in table 1. Here, we fix d̂ = 0.13 and vary Re for
fixed values of a. For example, it can be seen that with a = 1.45 when Re= 9650
the eigenvalue with smaller cr =0.277278 is the leading one whereas when Re= 9700
the next eigenvalue with larger cr = 0.421619 takes over to control the stability. Such
eigenvalue switching is allowed in complex space and does not contradict continuity.
At a = 1.65, the change of leading eigenvalue also occurs between Re =10 600 and
10 650, while the stability now is dominated by the mode with smaller cr in the lower
range of Re between 7150 and 7200. At a = 1.95, we observe another example of the
change of the first two leading eigenvalues with Re.

The mode switching can also be seen from the eigenvalue spectrum for d̂ =0.13,
a =1.48 shown in figure 4. In the upper part of figures 4(a) and 4(c), we can see
clearly that two eigenvalues are dominant. As Re goes from 9900 to 104 the leading
eigenvalues change places, i.e. the mode switching occurs, see the blown-up detail in
figures 4(b) and 4(d). For Re= 9900, the left-hand mode with smaller cr is closer to
the neutral state (ci = 0, figure 4b). For Re =10 000, the value of ci for the right-hand
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Figure 5. The variations of neutral curves with several assigned values of Beavers–Joseph

constant α. The other parameters are δ = 10−3, χ =0.3, d̂ = 0.13 and J = 0.

mode increases faster than the left-hand one (figure 4d), and becomes positive to
dominate the stability of the system.

3.2. The Beavers-Joseph constant α effects

Examining effects of α can help to clarify the physical mechanism triggering the tri-
modal instability. We compute the neutral curves for four different α and the results
are shown in figure 5. According to (2.5), the Beavers–Joseph interface condition, the
value of α can be seen as being proportional to the magnitude of the velocity gradient
above the interface, i.e. a larger α corresponds to a larger velocity gradient or a larger
shear stress above the interface. Accordingly, for α = 0.08, the shear stress above the
interface is small and the instability occurs in both the fluid and porous layers and the
bi-modal stability prevails (similar to figures 2a and 2b). For α = 0.1, the shear stress
increases and triggers the even-fluid-layer mode, resulting in the tri-modal stability.
For α =0.2 and 0.3, the shear stress at the interface is so large that the even-fluid-layer
mode instability is enhanced and dominates the system completely.

In view of the stability criteria, results of figure 5 conclude that a larger α (� 0.2)
can more easily trigger the instability in the fluid layer, leading to a more unstable
system. On the other hand, a smaller α (� 0.08) leads to an instability mode in both
layers, so that the resistance in a porous medium makes the system more stable. A
moderate value of α (≈ 0.1) gives rise to the even-fluid-layer-mode instability, which
serves to terminate the bi-modal instability so that the system is transferred to the
fluid-layer-dominant state by way of a tri-modal instability.

3.3. The Darcy number δ effect

In figure 6, six neutral curves for different δ are presented. Note that the value of
δ equivalently accounts for the permeability of the porous layer. The three curves
for δ � 2 × 10−3 show that the critical mode has a small a, being similar to the
case of figure 2(a) that the porous-layer mode prevails. For these cases, the porous
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The other parameters are α = 0.1, χ = 0.3, d̂ = 0.13 and J = 0.

layer dominates the system because, owing to a larger δ (or a larger permeability
in the porous layer), the instability can more easily occur in the porous medium.
Consequently, the system becomes more unstable for a larger δ. As δ is decreased to
1 × 10−3, owing to the smaller permeability (or the higher resistance) in the porous
layer, more fluid is forced to move within the fluid layer so that the velocity gradient
(or the shear) above the interface increases. As a result, the even-fluid-layer mode
is triggered and the fluid layer becomes dominant in the system. As δ is decreased
further, the fluid-layer dominance is enhanced and eventually the fluid layer controls
the stability completely. For such a system, the porous layer has a small permeability
(or equivalently a small porosity) so that the presence of the porous layer plays no
role in the stability of the system. Namely, the whole system behaves like a plane
Poiseuille flow with a porous-slip boundary below.

4. Conclusions
We have studied the linear instability problem for the situation of Poiseuille flow

when the configuration is one of a Newtonian fluid overlying a porous layer saturated
with the same fluid. The linearized analysis has revealed an instability scenario where
three distinct regimes of instability are found as physical parameters d̂ , α and δ change.
Based on the parameter values considered in the present study, the critical values
are d̂ ≈ 0.13 or α ≈ 0.1 or δ ≈ 10−3 at which the stability is shifted from bi-modal to
tri-modal. Generally, for a smaller d̂ , a smaller α, or a larger δ, the bi-modal instability
prevails (the porous-layer and the odd-fluid-layer modes exist simultaneously) and the
porous layer predominates the system. At about these critical values, the instability
is tri-modal, the even-fluid-layer mode (or the third mode) instability is initiated
to compete with the other two modes. As d̂ or α increases or as δ decreases, the
even-fluid-layer mode instability is enhanced, leading to the fluid layer controlling the
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stability completely. The even-fluid-layer mode is initiated by the shear in the fluid
layer. As this mode prevails, the present system behaves like the plane Poiseuille flow
with a solid boundary at the top and a porous-slip boundary below.

We define these three instability modes in a more precise way as follows. The
porous layer mode corresponds to the local minimum of the left-hand lobe of the
neutral curve (figure 2a). As it prevails, the porous layer dominates the stability of
the system and a significant portion of perturbation of the flow occurs in the porous
layer. The odd-fluid-layer mode corresponds to the local minimum of the right-hand
lobe of the neutral curve (figure 2b). As it prevails, the fluid layer dominates the
stability of the system and most of the perturbed flow occurs in the fluid layer, in
which the perturbed streamfunction is an odd-symmetric function with respect to
the centreline of the fluid layer. The even-fluid-layer mode corresponds to the local
minimum of the central lobe of the neutral curve (figure 2d). As it prevails, the fluid
layer dominates the stability of the system and the perturbed streamfunction is an
even-symmetric function with respect to the centreline of the fluid layer. The porous-
layer and odd-fluid-layer modes exist only in small ranges of the physical parameters
considered. Beyond these parameter ranges, the even-fluid-layer mode prevails and
dominates the stability of the system.

It is believed that these three instability modes are triggered by the shear in the
fluid layer. Explanations are given in the following. For the porous-layer mode, the
instability initiates in the fluid layer and penetrates into the porous layer through
the fluid–porous layer interface; it can be seen from figure 3(a) that most of the
perturbation in the porous layer is confined to the region close to the interface. For
the odd-fluid-layer mode, the instability also initiates in the fluid layer but remains in
the fluid layer owing to the large restriction to the fluid motion in the porous layer.
However, it will be replaced by the even-fluid-layer mode when the porous layer effect
becomes negligible and the system behaves like a plane Poiseuille flow with a solid
boundary at the top and a slip-porous boundary at bottom, which occurs when the
depth ratio is large, the Darcy number is small, or the Beavers–Joseph constant is
large.

Since for a plane Poiseuille flow, the even-symmetry of the basic Poiseuille flow
precludes the possibility of the odd-shear-mode instability. Accordingly, the odd-
fluid-layer exists only when the porous layer still plays a role, although the role may
not be as significant as in the case where the porous-layer mode prevails. For the
even-fluid-layer mode, the mechanism triggering the intability is also the shear in
the fluid layer. This mode dominates the superposed-layer system in a large range
of parameters, in which the porous layer behaves like a slip-porous boundary to the
system and the whole system behaves like a plane Poiseuille flow with a slip-porous
boundary below.

Based on the above discussions, we may imply that when the porosity of the
porous layer approaches zero, only the even-fluid-layer mode persists because under
such circumstances the whole system behaves like a plane Poiseuille flow so that the
even-shear mode dominates.

The present stability characteristics are different from two other similar systems
considered previously. To the Bénard problem considered in Chen & Chen (1988)
in which no shear exists in the basic flow, only the odd-fluid-layer and porous-layer
modes compete to dominate the system. To the two immiscible superposed fluids
considered in Tilley et al. (1994a, b) in which a sharp interface lies between two fluids,
three modes exist simultaneously: the even-mode, the odd-mode, and the interfacial
shear mode; and the interfacial shear mode becomes dominant when d̂ is large. In
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the present system, both the bi-modal and the tri-modal instabilities exist only in
small ranges of d̂ , α and δ. For the cases beyond these ranges, the even-fluid-layer
mode is enhanced to dominate the system so that the fluid layer controls the stability
completely.

The authors thank the financial support for this research from National Science
Council (Taiwan) through grants NSC 92-2212-E-002-007 and NSC 92-2212-E-132-
001.
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